Synthesis and antiviral evaluation of a mutagenic and non-hydrogen bonding ribonucleoside analogue: 1-beta-D-Ribofuranosyl-3-nitropyrrole.
نویسندگان
چکیده
Synthetic small molecules that promote viral mutagenesis represent a promising new class of antiviral therapeutics. Ribavirin is a broad-spectrum antiviral nucleoside whose antiviral mechanism against RNA viruses likely reflects the ability of this compound to introduce mutations into the viral genome. The mutagenicity of ribavirin results from the incorporation of ribavirin triphosphate opposite both cytidine and uridine in viral RNA. In an effort to identify compounds with mutagenicity greater than that of ribavirin, we synthesized 1-beta-D-ribofuranosyl-3-nitropyrrole (3-NPN) and the corresponding triphosphate (3-NPNTP). These compounds constitute RNA analogues of the known DNA nucleoside 1-(2'-deoxy-beta-D-ribofuranosyl)-3-nitropyrrole. The 3-nitropyrrole pseudobase has been shown to maintain the integrity of DNA duplexes when placed opposite any of the four nucleobases without requiring hydrogen bonding. X-ray crystallography revealed that 3-NPN is structurally similar to ribavirin, and both compounds are substrates for adenosine kinase, an enzyme critical for conversion to the corresponding triphosphate in cells. Whereas ribavirin exhibits antiviral activity against poliovirus in cell culture, 3-NPN lacks this activity. Evaluation of 3-NPNTP utilization by poliovirus RNA-dependent RNA polymerase (RdRP) revealed that 3-NPNTP was not accepted universally. Rather, incorporation was only observed opposite A and U in the template and at a rate 100-fold slower than the rate of incorporation of ribavirin triphosphate. This diminished rate of incorporation into viral RNA likely precludes 3-NPN from functioning as an antiviral agent. These results indicate that hydrogen bonding substituents are critical for efficient incorporation of ribonucleotides into RNA by viral RdRPs, thus providing important considerations for the design of improved mutagenic antiviral nucleosides.
منابع مشابه
Test of the potential of a dATP surrogate for sequencing via MALDI-MS.
1-(2'-Deoxy-beta-d-ribofuranosyl)-3-nitropyrrole phosphate was incorporated into a DNA decamer and analyzed via matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). The extent and composition of the various fragment peaks were compared with those in the MALDI-MS spectrum of dT4AT5. The nitropyrrole-containing oligomer proved to be more robust. Two different DNA template ass...
متن کاملCytostatic and Antiviral 6-Arylpurine Ribonucleosides IX. Synthesis and Evaluation of 6-Substituted 3-Deazapurine Ribonucleosides
A series of 3-deazapurine ribonucleosides 5a–5l bearing diverse C-substituents (alkyl, aryl and heteroaryl) in the position 6 were prepared by Pd-catalyzed cross-coupling reactions of either free 6-chloro-3-deazapurine ribonucleoside 4 or its acetyl protected congener 3 followed by deprotection. An improved synthesis of the starting 4-chloro-1-(2,3,5-tri-O-acetylβ-D-ribofuranosyl)-1H-imidazo[4,...
متن کاملSynthesis, Structure, and Deoxyribonucleic Acid Sequencing with a Universal Nucleoside:
A nucleoside analogue, 1 -(2’-deoxy-~-~-ribofuranosyl)-3-nitropyrrole (4) was designed to function as a universal replacement for any of the natural nucleosides in DNA sequences. Compound 4 was synthesized by the reaction of 3-nitropyrrole with sodium hydride and l-chloro-2-deoxy-3,5-di-O-toluoyl-~-e~opentofuranose, and the structure was confirmed by X-ray diffraction. Nucleoside 4 was transfor...
متن کاملSynthesis and RNA polymerase incorporation of the degenerate ribonucleotide analogue rPTP.
The synthesis and enzymatic incorporation into RNA of the hydrogen bond degenerate nucleoside analogue 6-(beta-d-ribofuranosyl)-3, 4-dihydro-8H-pyrimido[4,5-c]-[1,2]oxazin-7-one (P) is described. The 5'-triphosphate of this analogue is readily incorporated by T3, T7 and SP6 RNA polymerases into RNA transcripts, being best incorporated in place of UTP, but also in place of CTP. When all the urid...
متن کاملExpanding the genetic alphabet: non-epimerizing nucleoside with the pyDDA hydrogen-bonding pattern.
6-Amino-3-(2'-deoxy-beta-D-ribofuranosyl)-5-nitro-1H-pyridin-2-one (4), a C-glycoside exhibiting the nonstandard pyDDA hydrogen-bonding pattern, was synthesized via Heck coupling. The nitro group greatly enhances the stability of the nucleoside toward acid-catalyzed epimerization without leading to significant deprotonation of the heterocycle at physiological pH. These results make nucleoside 4...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 41 29 شماره
صفحات -
تاریخ انتشار 2002